Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering Mechanical Engineering Department Spring Semester SYLLABUS

Code/Name MEC 206 / Thermodynamics II						
Туре	Required					
Credit/ECTS	5/5					
Hour per Week 3 (3+0+0)						
Level/Year Undergraduate/2						
Semester Spring						
Classroom	A-203					
Content	Gas power cycles. Vapor and combined power cycles. Refrigeration cycles and heat pur systems. Thermodynamic property relations. Gas mixtures. Gas-vapor mixtur psychrometry, and air conditioning processes. Chemical reactions.					
Prerequisites						
Textbooks	Primary					
	Y A Cengel, M A Boles, M Kanoglu, <i>Thermodynamics: An Engineering Approach</i> , 10 th edition, McGraw-Hill, 2024.					
	Supplementary M J Moran, H N Shapiro, D D Borttner, M B Bailey, <i>Fundamentals of Engineering</i> <i>Thermodynamics</i> , 9 th edition, Wiley, 2020.					
Objectives	• To analyze gas power, vapor power, and refrigeration cycles using the first and second laws of thermodynamics					
	To analyze air conditioning processes.					
	 To analyze chemical reactions using thermodynamic principles. 					
Course Outcomes	In this course you will be able to:					
	CO1 Describe operation and thermodynamic principles of internal combustion engine					
	cycles, gas power cycles and jet engines					
	CO2 Describe operation and thermodynamic principles of vapor power, refrigeration, and heat pump cycles					
	CO3 Perform performance analyses of ideal and actual gas power, vapor power, and refrigeration cycles					
	CO4 Determine the thermodynamic properties from the available data					
	CO5 Find the properties of non-reacting mixtures and perform thermodynamic analysis on air-conditioning processes					
	C06 Acquire the basic concepts in analyzing the reacting mixtures					

Weekly Schedule of Topics

W	Topic			
1	Gas power cycles			
2	Gas power cycles			
3	Gas power cycles			
4	Vapor power cycles			
5	Vapor power cycles			
6	Vapor power cycles			
7	Refrigeration cycles			
8	Refrigeration cycles			
9	Thermodynamic property relations			
10	Gas mixtures			

- 11 Psychrometry and air-conditioning
- 12 Psychrometry and air-conditioning
- 13 Chemical reactions
- 14 Chemical reactions

Professional Contribution

Ability to understand, analyze, and improve energy systems

Contribution to Program Outcomes*

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
C01	5	5	0	3	0	0	0	0	2	0	0
CO2	5	5	0	3	0	0	0	0	2	0	0
CO3	5	5	0	3	0	0	0	0	2	0	0
C04	5	5	0	3	0	0	0	0	0	0	0
CO5	5	5	0	3	0	0	0	0	0	0	0
C06	5	5	0	3	0	0	0	0	0	0	0

* Contribution Level | 0: None | 1: Very Low | 2: Low | 3: Medium | 4: High | 5: Very High

Special Conditions • Students work in groups for project and presentations.

Requirements						
Evaluation	Midterm Exam Quizzes <u>Final Exam</u> Total	40% 20% <u>40%</u> 100%				
Rubric						
Course Policy	tired to attend at least 70% of the theoretical courses and 80% of the dapplication sessions including add-drop period. Otherwise, you will f DZ. Health reports and other official or nonofficial excuses are not time. Late attendance may result in grade deductions. ways be used to communicate with one another. build be switched off and put away during the class. the textbooks and other illegal course materials cannot be used for d exams.					
Cheating & Plagiarism	 Copying or letting someone to copy your work on exams, assignments, or reports is cheating. Cutting and pasting text, figures and tables from the web sources or any other electronic source is plagiarism. A consequence of academic dishonesty is to receive a grade of FF for the course. 					

Instructor

Name/Surname	Mehmet Kanoglu	Email	mehmet.kanoglu@alanya.edu.tr
Room	121	Office Hours	Tuesday: 13:30 – 14:30
			Thursday: 14:30 – 15:30

Prepared by Mehmet Kanoğlu