Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering Mechanical Engineering Department 2022-2023 Fall Semester SYLLABUS

Code/Name	MEC 205 / Thermodynamics I							
Туре	Required							
Credit/ECTS	5/5							
Hour per Week	3 (3+0+0)							
Level/Year								
Semester	Fall							
Classroom A 103 and A 403								
Content	Basic concepts of thermodynamics. Properties of pure substances, ideal gases compressibility factor. Energy, energy transfer and the first law of thermodynamics. Energy analysis for closed systems and control volumes. The second law of thermodynamics. He engines and refrigerators. Carnot cycle. Entropy, entropy generation, and entropy bala Isentropic efficiencies of steady-flow devices. Exergy analysis.							
Prerequisites								
Textbooks	Primary Y A Cengel, M A Boles, M Kanoglu, <i>Thermodynamics: An Engineering Approach</i> , 10 th edition, McGraw-Hill, 2023. Supplementary							
	M J Moran, H N Shapiro, D D Borttner, M B Bailey, Fundamentals of Engineering Thermodynamics, 9th edition, Wiley, 2020.							
Objectives	 To analyze energy systems using the first law of thermodynamics To analyze energy systems using the second law of thermodynamics To assess performance of energy conversion devices 							
Course Outcomes	In this course you will be able to: C01 Identify different forms of energy and energy conversion processes C02 Use energy balance on closed systems to formulate and solve different thermodynamic problems C03 Use mass and energy balance to solve steady-flow and unsteady flow problems C04 Describe operation and principles of heat engines, steam cycle, refrigerators, and heat pumps C05 Perform entropy and exergy balance on closed systems and control volumes C06 Calculate isentropic efficiencies of turbines, compressors, nozzles, and pumps							
Weekly Schedule of T	Copics							
W Topic 1 Basic concepts	s of thermodynamics, temperature							

W	Topic
1	Basic concepts of thermodynamics, temperature
2	Energy and the first law of thermodynamics
3	Properties of pure substances, ideal gases, compressibility factor
4	Closed system energy analysis for real substances
5	Closed system energy analysis for ideal gases and incompressible substances
6	Mass balance, energy analysis for steady-flow devices
7	Energy analysis for steady-flow devices and unsteady systems
8	The second law of thermodynamics, irreversibility
9	Heat engines, refrigerators, Carnot cycle
10	Entropy, entropy transfer, entropy generation

11	Isentropic efficiencies
12	Entropy balance
13	Exergy, exergy destruction, second-law efficiency
14	Exergy balance

Professional
Contribution

Ability to understand, analyze, and improve energy systems

Contribution to Program Outcomes*

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011
CO1	0	0	0	0	0	0	0	0	5	0	0
CO2	5	0	0	5	0	0	0	0	3	3	0
CO3	5	0	0	5	0	0	0	0	3	3	0
CO4	4	0	0	5	0	0	0	0	3	0	0
CO5	5	0	0	5	0	0	0	0	3	3	0
C06	5	0	0	5	0	0	0	0	3	3	0

^{*} Contribution Level | 0: None | 1: Very Low | 2: Low | 3: Medium | 4: High | 5: Very High

Special Conditions	Students work in groups for project and presentations.					
Requirements						
Evaluation	Midterm Exam 40% Quiz, Assignment 15% Final Exam 45%					
	Total 100%					
Rubric						
Course Policy	 Students are required to attend at least 70% of the theoretical courses and 80% of the courses with lab/application sessions including add-drop period. Otherwise, you will receive a grade of DZ. Health reports and other official or nonofficial excuses are not accepted. Be in the class on time. Late attendance may result in grade deductions. English should always be used to communicate with one another. Mobile phone should be switched off and put away during the class. Illegal copies of the textbooks and other illegal course materials cannot be used for the classwork and exams. 					
Cheating & Plagiarism	 Copying or letting someone to copy your work on exams, assignments, or reports is cheating. Cutting and pasting text, figures and tables from the web sources or any other electronic source is plagiarism. A consequence of academic dishonesty is to receive a grade of FF for the course. 					

Instructor

Name/Surname	Mehmet Kanoglu	Email	mehmet.kanoglu@alanya.edu.tr
Room	121	Office Hours	Tuesday: 15:30 – 16:30
			Thursday: 15:30 - 16:30

Prepared by Mehmet Kanoğlu