Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering **Mechanical Engineering Department** 2023-2024 Spring Semester

Syllabus	
Code/Name	SEC 402.4 / Mechanical Vibrations
Туре	Elective
Credit/ECTS	6/6
Hour per Week	3 (3+0+0)
Level/Year	Undergraduate/4
Semester	Spring
Classroom	WWF D204 D204 A203
Content	This is an introductory course in the basic theory and applications of vibration engineering. Free and forced vibration of single degree of freedom and multi degrees of freedom systems. Response to harmonic excitations. Vibration under general forcing. Vibration of continuous systems. Vibration measurement and passive vibration control. Analytical and experimental modal analysis.
Prerequisites	MEC 203 Dynamics
Textbooks	 Primary SS Rao, Mechanical Vibrations, Pearson, 8th Ed., 2018. Supplementary DJ Inman, Engineering Vibration, Pearson, 4th Ed., 2014. MP Norton and DG Karczub, Fundamentals of Noise and Vibration Analysis for
	Engineers, Cambridge University Press, 2003.
Objectives	 To formulate the equations of motion of vibrating systems To analyze free and forced vibrations of SDOF and MDOF linear systems To compute dynamic properties of mechanical systems
Course Outcomes	In this course you will be able to: CO1 Categorize vibration analysis procedures CO2 Predict the behavior of vibrating systems CO3 Calculate the response of systems to different excitation functions CO4 Compute natural frequencies and mode shapes CO5 Perform modal analysis CO6 Evaluate passive vibration isolation methods

Weekly Schedule of Topics

W	Торіс
1	Basic concepts of vibration
2	Vibration analysis procedure
3	Free vibration of SDOF systems
4	Free vibration of SDOF systems
5	Forced vibration of SDOF systems
6	Two degrees of freedom systems
7	MDOF systems
8	MDOF systems
9	Eigenvalue problem
10	Modal analysis

Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering Mechanical Engineering Department 2023-2024 Spring Semester

11 Me	odal ana	lysis
-------	----------	-------

- 12 Vibration suppression
- 13 Continuous systems
- 14 Continuous systems

Professional	Ability t	0	identify	various	types	of	practical	vibration	problems	and	develop
Contribution	mathema	tic	al model	s to find t	he resp	ons	e, and inte	rpret the r	esults		

Contribution to Program Outcomes*

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
C01	5	4	0	3	0	4	2	3	3	3	1
CO2	5	4	0	3	0	4	2	3	3	3	1
CO3	5	5	0	3	0	4	5	3	3	3	3
CO4	5	5	3	3	4	4	5	3	3	4	3
C05	5	5	3	3	0	4	5	3	3	4	3
C06	5	5	3	3	4	4	5	3	3	4	3

* Contribution Level | 0: None | 1: Very Low | 2: Low | 3: Medium | 4: High | 5: Very High

Special Conditions	Students work in groups for the presentations.							
Requirements	Basic knowledge of a dynamic analysis software and Matlab							
Course Policy	 Be in the class on time. English should always be used to communicate with one another. At least 70% attendance is required, otherwise a grade of DZ will be assigned. You must be present in class for the presentations, otherwise you will not be graded for the presentation. 							
Cheating & Plagiarism	 Copying or letting someone copy your work on exams, assignments, or reports is cheating. Cutting and pasting text, figures and tables from web sources or any other electronic source is plagiarism. The consequence of academic dishonesty is to receive a grade of FF for the course. 							
Evaluation	Midterm Exam Presentations (2×10 pts.) <u>Final Exam</u> Total	40% 20% <u>40%</u> 100%						
Rubric	A rubric will be announced prior to presentation sessions. The rubric has 2 main parts for the grading: technical assessment and writing or presentation performance.							
Instructor								
Name/Surname	Akın Oktav	Email	akin.oktav@alanya.edu.tr					

Office Hours

W 11.30-12.30 | F 13.30-14.30

Prepared by Akın Oktav on February 5th, 2024

Room

209