Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering **Department of Genetic and Bioengineering**2024-2025 Fall Semester

Code/Name	MEC209 /Differential Equations
Туре	Required
Credit/ECTS	5/5
Hour per Week	4 (4+0+0)
Level/Year	Undergraduate/2
Semester	Fall
Classroom	WWF A003
Content	Introduction to differential equations with their definitions and terminology. Classification of Differential Equations. Initial Value Problems (IVPs). First-Order Ordinary Differential Equations (Separable, Homogeneous, Exact, Linear, Bernoulli and Riccati Differential Equations. Integrating Factors). Higher-order linear differential equations. Boundary Value Problems (BVPs). Solutions of higher-order homogeneous linear differential equations with constant coefficients. Solutions of higher-order nonhomogeneous linear differential equations with constant coefficients (The method of undetermined coefficients and the method of variation of parameters). Cauchy-Euler equation. Reduction of order. The Laplace Transform. Solving linear ordinary differential equations by the Laplace Transform. Series solutions of differential equations.
Prerequisites	None
Textbooks	Primary Class Notes Supplementary Coddington, Earl A. An introduction to ordinary differential equations. Courier Corporation, 2012. Ross, Shepley. Introduction to ordinary differential equations. (2021) Wiley. Bronson, Richard. Schaum's Easy Outlines: Differential Equations. McGraw-Hill, 2012.
Objectives	 To be able to classify the differential equations with respect to their certain properties such as type, order and linearity To be able to solve first-order differential equations. To be able to solve the higher order homogeneous and nonhomogeneous linear differential equations with constant coefficients. To be able to solve system use the Laplace transform in finding the solution of linear differential equations of linear first order differential equations with constant coefficients, To be able to use the Laplace transform in finding the solution of linear differential equations To be able to find the series solutions of differential equations
Course Outcomes	In this course you will be able to: CO1 Classify the differential equations CO2 Express a real-world problem in the form of differential equation CO3 Analyze a mathematical model by using the methods and techniques of differential equations CO4 Sketch direction fields and interpret what they tell about a differential equation

Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering

Department of Genetic and Bioengineering

2024-2025 Fall Semester

1	Introduction to differential equations with their definitions and terminology. Classification of Differential Equations					
2	First-Order Ordinary Differential Equations: Separable and Homogeneous equations					
3	First-Order Ordinary Differential Equations: Exact equation and Integrating factor					
4	First-Order Ordinary Differential Equations: Method of grouping, Linear and Bernoulli equations					
5	Physical applications of first order equations					
6	Higher order homogeneous differential equations with constant coefficients					
7	Higher order nonhomogeneous differential equations with constant coefficients: the method of undetermined coefficients and the method of variation of parameters					
8	Cauchy -Euler Equations					
9	Reduction of order					
10	Laplace transform					
11	Solving linear ordinary differential equations by the Laplace Transform.					
12	Solutions of system of differential equations					
13	Series solutions of differential equations					
14	Modelling higher order and system of differential equations					

Professional Contribution

Ability to model some physical problems by using ordinary differential equations and solve them.

Contribution to Program Outcomes*

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011
CO1	5	5	1	3	0	0	0	1	0	0	0
CO2	5	5	1	3	0	0	0	1	0	0	0
CO3	5	5	1	3	0	0	0	1	0	0	0
CO4	5	5	1	3	0	0	0	1	0	0	0
CO5	5	5	1	3	0	0	0	1	0	0	0

^{*} Contribution Level | 0: None | 1: Very Low | 2: Low | 3: Medium | 4: High | 5: Very High

Special Conditions	None					
Requirements	Knowledge of derivative and integration methods.					
Course Policy	 Be in the class on time. English should always be used to communicate with one another. At least 70% attendance is required, otherwise a grade of DZ will be assigned. 					
Cheating & Plagiarism	 Copying or letting someone copy your work on exams, assignments, or reports is cheating. Cutting and pasting text, figures and tables from web sources or any other electronic source is plagiarism. The consequence of academic dishonesty is to receive a grade of FF for the course. 					
Evaluation	Quizzes (2×10 pts.) Midterm Presentation Final Exam Total	0% 50% 0% 50% 100%				

Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering **Department of Genetic and Bioengineering**

2024-2025 Fall Semester

Instructor

Name/Surname	Ibrahim Tekin	Email	Ibrahim.tekin@alanya.edu.tr
Room	421	Office Hours	T 10.30-12.30

Prepared by Ibrahim Tekin on October 17th, 2024.