Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering Mechanical Engineering Department 2023-2024 Spring Semester SYLLABUS

Code/Name	SEC302.2 / Pipeline Engineering					
Туре	Compulsory Elective (CE)					
Credit/ECTS	3/3					
Hour per Week	3 (3+0+0)					
Level/Year	Undergraduate/3					
Semester	Spring					
Classroom	A402					
Content	Covers fundamentals of piping systems, hydraulic and mechanical design considerations, pipe sizing and selection, constant and telescopic wall thickness, pipe network design, pipeline economics, transient pipe flow, pumps performance, affinity laws, cavitation and net positive suction head. Introduces drag reduction techniques, thermal hydraulics and natural gas transmission.					
Prerequisites						
Textbooks	Primary: Design of Fluid Thermal Systems, W. S. Janna, 4th edition, SI Edition, 2015, Cengage Learning Supplementary					
Objectives	 Understand hydraulic and mechanical design procedures for pipelines. Use computational techniques to solve flow in simple pipe networks. Learn the fundamentals of transient pipe flow. Understand pipe performance and the influence of cavitation. 					
Course Outcomes	In this course students will be able to:					
	CO1 Optimize the pipe diameter for a specified flow rate of a certain fluid					
	CO2 Calculate the suitable pipe wall thickness for a specified pipe grade					
	CO3 Estimate the net positive suction head for a simple pipe system					
	CO4 Estimate the effect of fluid viscosity on the performance of centrifugal pumps					
	CO5 Use the affinity laws to analyze centrifugal pump performance					

Weekly	Weekly Schedule of Topics		
W	Topic		
1	Introduction		
2	Fluid properties and basic equations		
3	Hydraulics of piping systems		
4	Hydraulics of piping systems		
5	Optimization of piping systems		
6	Economics of piping systems		
7	Analysis of pipe networks		
8	Analysis of pipe networks		
9	Pump performance and analysis		
10	Pump performance and analysis		
11	Cavitation and net positive suction head		
12	Natural gas transmission		
13	Major exams		
14	Review		

Professional
ContributionAbility to understand, apply, and use the numerical methods and tools in engineering

Contribution to Frogram outcomes											
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
C01	5	1	5	5	0	2	1	3	1	5	2
CO2	5	1	5	5	0	2	1	3	1	5	2
CO3	5	1	5	5	0	2	1	3	1	5	2
C04	5	1	5	5	0	2	1	3	1	5	2
C05	5	1	5	5	0	2	1	3	1	5	2

Contribution to Program Outcomes*

* Contribution Level | 0: None | 1: Very Low | 2: Low | 3: Medium | 4: High | 5: Very High

Special Conditions	• The consequence of violation of the attendance rule is to receive a grade of NA .					
Requirements	Fundamental knowledge about fluid mechanics.					
Evaluation	Midterm Exam40%Quizzes20%Final Exam40%Total100%					
Course Policy	 You must attend at least 70% of the sessions including add-drop period. Otherwise, you will receive a grade of NA. Be in the class on time. English should always be used to communicate with one another. Mobile phone should be switched off and put away during the class. Illegal copies of the textbooks and other course materials cannot be used for the classwork and exams 					
Cheating & Plagiarism	 Copying or letting someone to copy your work on exams, assignments, or reports is cheating. Cutting and pasting text, figures and tables from the web sources or any other electronic source is plagiarism. A consequence of academic dishonesty is to receive a grade of FF for the course. 					

Instructor

Name/Surname	Dr. Gökhan CANBOLAT	Email	gokhan.canbolat@alanya.edu.tr
Room	411	Office Hours	Wednesday : 13:30 – 14:30 Thursday : 13:30 – 14:30