Graduation Project Proposal

Project Title	Vibroacoustic modelling and experimental verification of aluminium honeycomb sandwich panel		
Classification	Research project		
Supervisor	Akın OKTAV		
Abstract	Although there are studies on modelling the dynamic behaviour of aluminium honeycomb sandwich panels in the literature, it is seen that there are limited studies to experimentally verify the vibroacoustic models of these structures. In the proposed project, it is aimed to verify the vibroacoustic model of the aluminium honeycomb sandwich panel with experimental modal analysis and microphone measurements. The sound transmitted by the panel through airborne and structure- borne paths will be measured by computational analysis and experimentally with microphones and a study will be carried out aiming to verify the vibroacoustic model.		

The graduation project is the subject of the MEC 401 Mechanical Engineering Design and MEC 402 Graduation Project courses offered in the 7th and 8th semesters, respectively.

Prerequisites MEC 308 / Theory of Machines II Corequisites None Requirements Basic knowledge of a finite element analysis package • Literature survey • Construction of the finite element model • Computational analysis • Midterm presentation • Experimental modal analysis • Computational results	Course Name	MEC 401 Mechanical Engineering Design		
Requirements Basic knowledge of a finite element analysis package • Literature survey • Construction of the finite element model • Computational analysis • Midterm presentation • Experimental modal analysis	Prerequisites	MEC 308 / Theory of Machines II		
• Literature survey • Construction of the finite element model • Computational analysis • Midterm presentation • Experimental modal analysis	Corequisites	None		
 Construction of the finite element model Computational analysis Midterm presentation Experimental modal analysis 	Requirements	Basic knowledge of a finite element analysis package		
 Project report Final presentation 	Workflow	 Construction of the finite element model Computational analysis Midterm presentation Experimental modal analysis Comparison of the experimental and computational results Project report 		

Course Name	MEC 402 Graduation Project			
Prerequisites	MEC 401 Mechanical Engineering Design			
Corequisites	SEC 402.4 Mechanical Vibrations			
Requirements	None			
Workflow	 Structure-borne sound verification Comments on the results Midterm presentation Air-borne sound verification Project report Final presentation 			

Term	Fall'24						
Date							
Project Title	Vibroacoustic modelling and experimental verification of aluminium honeycomb sandwich panel						
Supervisor Name and Signature	Akın OKTAV						
Students							
First Name	Last Name	Student Number	Signature				