Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering Mechanical Engineering Department 2021-2022 Fall Semester

SYLLABUS

Code/Name MEC 205 / Thermodynamics I						
Type Required						
Credit/ECTS	5/5					
Hour per We	eek 3 (3+0+0)					
Level/Year	Undergraduate/2					
Semester	Fall					
Classroom	A 203 and A 403					
Content	Basic concepts of thermodynamics. Properties of pure substances, ideal gases and compressibility factor. Energy, energy transfer and the first law of thermodynamics. Energy analysis for closed systems and control volumes. The second law of thermodynamics. Heat engines and refrigerators. Carnot cycle. Entropy, entropy generation, and entropy balance. Isentropic efficiencies of steady-flow devices. Exergy analysis.					
Prerequisite	s					
Textbooks	 Primary Y A Cengel, M A Boles, M Kanoglu, Thermodynamics: An Engineering Approach, 9th edition, McGraw-Hill, 2019. Supplementary M J Moran, H N Shapiro, D D Borttner, M B Bailey, Fundamentals of Engineering Thermodynamics, 9th edition, Wiley, 2020. 					
Objectives	To analyze energy systems using the first law of thermodynamics					
	To analyze energy systems using the second law of thermodynamics					
	 To assess performance of energy conversion devices 					
Course Outco	In this course you will be able to: CO1 Identify different forms of energy and energy conversion processes CO2 Use energy balance on closed systems to formulate and solve different thermodynamic problems CO3 Use mass and energy balance to solve steady-flow and unsteady flow problems CO4 Describe operation and principles of heat engines, steam cycle, refrigerators, and heat pumps CO5 Perform entropy and exergy balance on closed systems and control volumes CO6 Calculate isentropic efficiencies of turbines, compressors, nozzles, and pumps					
Weekly Sche	dule of Topics					
W Topic	•					
	concepts of thermodynamics, temperature					
	Energy and the first law of thermodynamics					
	Properties of pure substances, ideal gases, compressibility factor					
4 Closed	l system energy analysis for real substances					
5 Closed	system energy analysis for ideal gases and incompressible substances					
6 Mass l	Mass balance, energy analysis for steady-flow devices					
7 Energ	Energy analysis for steady-flow devices and unsteady systems					
9 Heat e	Heat engines, refrigerators, Carnot cycle					

10

Entropy, entropy transfer, entropy generation

11	Isentropic efficiencies
12	Entropy balance
13	Exergy, exergy destruction, second-law efficiency
14	Exergy balance

Professional Contribution

Ability to understand, analyze, and improve energy systems

Contribution to Program Outcomes*

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
CO1	0	0	0	0	0	0	0	0	5	0	0
CO2	5	0	0	5	0	0	0	0	3	3	0
CO3	5	0	0	5	0	0	0	0	3	3	0
CO4	4	0	0	5	0	0	0	0	3	0	0
CO5	5	0	0	5	0	0	0	0	3	3	0
C06	5	0	0	5	0	0	0	0	3	3	0

^{*} Contribution Level | 0: None | 1: Very Low | 2: Low | 3: Medium | 4: High | 5: Very High

Special Conditions • Students work in groups for project and presentations.

Special conditions	 The consequence of violation of the attendance rule is to receive a grade of NA. 						
	• The consequence of violation of the attendance rule	is to receive a grade of NA.					
Requirements							
Evaluation	Midterm Exam 30%						
	Quizzes 10%						
	Assignment 20%						
	Final Exam 40%						
	Total 100%						
Rubric							
Course Policy	ng add-drop period.						
	2. Be in the class on time.						
	3. English should always be used to communicate with one another.						
	4. Mobile phone should be switched off and put away during the class.						
	5. No talking to classmates during class no matter what the subject is.						
Cheating &	Copying or letting someone to copy your work on exams, assignments, or reports is						
Plagiarism							
	 Cutting and pasting text, figures and tables from the web sources or any oth 						
	electronic source is plagiarism.						
	• The consequence of academic dishonesty is to receive a grade of F for the course.						

Instructor

Name/Surname	Mehmet Kanoglu	Email	mehmet.kanoglu@alanya.edu.tr
Room	121	Office Hours	Monday: 12:00 – 13:00
			Tuesday: 12:00 – 13:00

Prepared by Mehmet Kanoğlu on Sep. 7, 2021